2013 Graduate General Education

[High Performance Parallel Computing Technology for Computational Scie (01ZZ607)

Lecture Day : January 21-22, 2014

Location : International Workshop Room, Center for Computational Science

Course Overview

High performance computing is the basic technology to support today's hardware and software for high-end computing such as high speed corr high speed numerical algorithm, programming scheme and system soft based on large scale parallel processing systems and it is required even effective utilization of them. In this class, we focus on the basic technolo performance tuning for application users who aim to use these systems

Schedule

Jan.	21	(lue)		
				~	~

9:00-10:30	Fundamentals on HPC and Parallel Processing
10:45-12:15	Parallel Processing Systems
13:30-15:00	Parallel Programming 1: OpenMP
15:15-16:45	Parallel Programming 2: MPI

Jan. 22 (Wed)

9:00-10:30	Parallel Numerical Algorithm 1
10:45-12:15	Parallel Numerical Algorithm 2
13:30-15:00	Optimization 1: Computation Optimization
15:15-16:45	Optimization 2: Communication Optimization
	Usage of T2K

	Lecture name
1	Fundamentals on HPC and Parallel Processing
2	Parallel Processing Systems
3	Parallel Programming 1 - OpenMP
4	Parallel Programming 2: MPI
5	Parallel Numerical Algorithm 1
6	Parallel Numerical Algorithm 2

7	Optimization 1 - Computation Optimization
8	Optimization 2: Communication Optimization
	Usage of T2K

ence]

<u>S</u>

large scale scientific simulations. It covers widely spread issues on uputation, high speed networking, large scale memory and disk storage, ware to support them. Current advanced supercomputer systems are for application users to understand a certain level of these informations for ogy of high-end computing systems, programming, algorithm and for their practical simulation and computing.

Contents	Lecturer	
Amdahl's law, Parallelization methods (EP,		
Data parallelism, Pipeline parallelism),	Taisuke Boku	
Communication, Synchronization,	Taisuke Doku	
Parallelization efficiency, Load balance.		
Parallel processing systems (SMP, NUMA,	Yuetsu Kodama	
Cluster, Grid, etc.), Memory hierarchy,		
Memory bandwidth, Network, Communication		
bandwidth, Delay.		
Parallel programming model, parallel	Mitcumica Sato	
programming language OpenMP.	Milsumisa Salo	
Parallel programming language MPI2.	Claus Aranha	
Krylov subspace iterative methods and their	Hiroto Tadano	
parallelization methods.		
Fast Fourier Transformation (FFT) and its	Daisuko Takabachi	
parallelization methods.		

Program optimization techniques (Register blocking, Cache blocking, Memory allocation, etc.) and performance evaluation on a compute node of parallel processing systems.	Claus Aranha
Optimization techniques and performance evaluation of parallel programming on parallel processing systems.	Osamu Tatebe
Usage of T2K Open SuperComputer, NUMA, and MultiRail network.	